
IDLWAVE User Manual
Emacs major mode and shell for IDL

Edition 4.10, November 2001

by Carsten Dominik & J.D. Smith

Copyright c© 1999, 2000, 2001 Free Software Foundation, Inc.

This is edition 4.10 of the IDLWAVE User Manual for IDLWAVE version 4.10, November
2001.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided that the entire resulting derive work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

i

Table of Contents

1 Introduction . 1

2 IDLWAVE in a Nutshell . 2

3 Getting Started (Tutorial) 3
3.1 Lesson I: Development Cycle . 3
3.2 Lesson II: Customization . 5
3.3 Lesson III: Library Catalog . 7

4 The IDLWAVE Major Mode 8
4.1 Code Formatting . 8

4.1.1 Code Indentation . 8
4.1.2 Comment Indentation . 9
4.1.3 Continuation Lines and Filling 9
4.1.4 Syntax Highlighting . 10

4.2 Routine Info . 10
4.3 Online Help . 12
4.4 Completion . 14
4.5 Routine Source. 16
4.6 Resolving Routines . 17
4.7 Code Templates . 17
4.8 Abbreviations . 17
4.9 Actions . 19

4.9.1 Block Boundary Check . 20
4.9.2 Padding Operators. 20
4.9.3 Case Changes . 21

4.10 Documentation Header . 21
4.11 Motion Commands . 22
4.12 Miscellaneous Options . 22

5 The IDLWAVE Shell . 23
5.1 Starting the Shell . 23
5.2 Using the Shell . 24
5.3 Debugging IDL Programs . 26

5.3.1 Compiling Programs . 26
5.3.2 Breakpoints and Stepping . 27
5.3.3 Walking the Calling Stack . 28
5.3.4 Examining Variables . 28

ii

6 Installation . 29
6.1 Installing IDLWAVE. 29
6.2 Installing Online Help . 29
6.3 Upgrading from the old ‘idl.el’ file . 29

7 Acknowledgement . 30

Appendix A Sources of Routine Info 31
A.1 Routine Definitions . 31
A.2 Routine Information Sources . 31
A.3 Library Catalog . 32
A.4 Load-Path Shadows . 33
A.5 Documentation Scan . 34

Appendix B Configuration Examples 35

Appendix C Windows and MacOS 37

Index . 38

Chapter 1: Introduction 1

1 Introduction

IDLWAVE is a package which supports editing source files for the Interactive Data
Language (IDL1), and for running IDL as an inferior shell. It also can be used for editing
source for the related WAVE/CL language, but only with limited support. Note that this
package has nothing to do with the Interface Definition Language, part of the Common
Object Request Broker Architecture (CORBA).

IDLWAVE consists of two main parts: a major mode for editing command files (idlwave-
mode) and a mode for running the IDL program as an inferior shell (idlwave-shell-mode).
Both modes work together closely and form a complete development environment. Here is
a brief summary of what IDLWAVE does:
• Code indentation and formatting.
• Three level syntax highlighting support.
• Context-sensitive display of calling sequences and keywords for more than 1000 na-

tive IDL routines, extendible to any number of additional routines in your local IDL
libraries.

• Name space conflict search, with likelihood ranking.
• Fast, context-sensitive online help.
• Context sensitive completion of routine names and keywords.
• Easy insertion of code templates.
• Automatic type correction to enforce a variety of customizable coding standards.
• Integrity checks for logical blocks.
• Support for ‘imenu’ (Emacs) and ‘func-menu’ (XEmacs).
• Documentation support.
• Running IDL as an inferior Shell with history search, command line editing and all the

completion and routine info capabilities present in IDL source buffers.
• Compilation, execution and interactive debugging of programs directly from the source

buffer.
• Quick, source-guided navigation of the calling stack, with variable inspection, etc.
• Examining variables and expressions with a mouse click.

IDLWAVE is the successor to the ‘idl.el’ and ‘idl-shell.el’ files written by Chris
Chase. The modes and files had to be renamed because of a name space conflict with
CORBA’s idl-mode, defined in Emacs in the file ‘cc-mode.el’. If you have been using
the old files, check Section 6.3 [Upgrading from idl.el], page 29 for information on how to
switch.

In this manual, each section ends with a list of related user options. Don’t be confused
by the sheer number of options available – in most cases the default settings are just fine.
The variables are listed here to make sure you know where to look if you want to change
anything. For a full description of what a particular variable does and how to configure it,
see the documentation string of that variable. Some configuration examples are also given
in the appendix.

1 IDL is a registered trademark of Research Systems, Inc.

Chapter 2: IDLWAVE in a Nutshell 2

2 IDLWAVE in a Nutshell

Editing IDL Programs

〈TAB〉 Indent the current line relative to context.
C-M-\ Re-indent all lines in the current region.
M-〈RET〉 Start a continuation line, or split the current line at point.
M-q Fill the current comment paragraph.
C-c ? Display calling sequence and keywords for the procedure or function call at

point.
M-? Load context sensitive online help for nearby routine, keyword, etc.
M-〈TAB〉 Complete a procedure name, function name or keyword in the buffer.
C-c C-i Update IDLWAVE’s knowledge about functions and procedures.
C-c C-v Visit the source code of a procedure/function.
C-c C-h Insert a standard documentation header.
C-c 〈RET〉 Insert a new timestamp and history item in the documentation header.

Running the IDLWAVE Shell, Debugging Programs

C-c C-s Start IDL as a subprocess and/or switch to the interaction buffer.
M-p Cycle back through IDL command history.
M-n Cycle forward.
M-〈TAB〉 Complete a procedure name, function name or keyword in the shell buffer.
C-c C-d C-c Save and compile the source file in the current buffer.
C-c C-d C-x Goto next syntax error.
C-c C-d C-b Set a breakpoint at the nearest viable source line.
C-c C-d C-d Clear the nearest breakpoint.
C-c C-d C-p Print the value of the expression near point in IDL.

Commonly used Settings in ‘.emacs’

;; Change the indentation preferences
(setq idlwave-main-block-indent 2 ; default 0

idlwave-block-indent 2 ; default 4
idlwave-end-offset -2) ; default -4

;; Start autoloading routine info after 2 idle seconds
(setq idlwave-init-rinfo-when-idle-after 2)
;; Pad some operators with spaces
(setq idlwave-do-actions t

idlwave-surround-by-blank t)
;; Syntax Highlighting
(add-hook ’idlwave-mode-hook ’turn-on-font-lock)
;; Automatically start the shell when needed
(setq idlwave-shell-automatic-start t)
;; Bind debugging commands with CONTROL and SHIFT modifiers
(setq idlwave-shell-debug-modifiers ’(control shift))
;; Specify the online help files’ location.
(setq idlwave-help-directory "~/.idlwave")

Chapter 3: Getting Started (Tutorial) 3

3 Getting Started (Tutorial)

3.1 Lesson I: Development Cycle

The purpose of this tutorial is to guide you through a very basic development cycle using
IDLWAVE. We will paste a simple program into a buffer and use the shell to compile, debug
and run it. On the way we will use many of the important IDLWAVE commands. Note
however that there are many more capabilities in IDLWAVE than covered here, which can
be discovered by reading the entire manual.

It is assumed that you have access to Emacs or XEmacs with the full IDLWAVE package
including online help (see Chapter 6 [Installation], page 29). I also assume that you are
familiar with Emacs and can read the nomenclature of key presses in Emacs (in particular,
C stands for 〈CONTROL〉 and M for 〈META〉 (often the 〈ALT〉 key carries this functionality)).

Open a new source file by typing:
C-x C-f tutorial.pro 〈RET〉

A buffer for this file will pop up, and it should be in IDLWAVE mode, as shown in
the mode line just below the editing window. Also, the menu bar should contain entries
‘IDLWAVE’ and ‘Debug’.

Now cut-and-paste the following code, also available as ‘tutorial.pro’ in the IDLWAVE
distribution.

function daynr,d,m,y
;; compute a sequence number for a date
;; works 1901-2099.
if y lt 100 then y = y+1900
if m le 2 then delta = 1 else delta = 0
m1 = m + delta*12 + 1
y1 = y * delta
return, d + floor(m1*30.6)+floor(y1*365.25)+5

end

function weekday,day,month,year
;; compute weekday number for date
nr = daynr(day,month,year)
return, nr mod 7

end

pro plot_wday,day,month
;; Plot the weekday of a date in the first 10 years of this century.
years = 2000,+indgen(10)
wdays = intarr(10)
for i=0,n_elements(wdays)-1 do begin

wdays[i] = weekday(day,month,years[i])
end
plot,years,wdays,YS=2,YT="Wday (0=Sunday)"

end

Chapter 3: Getting Started (Tutorial) 4

The indentation probably looks funny, since it’s different from the settings you use, so use
the 〈TAB〉 key in each line to automatically line it up (or more quickly select the entire buffer
with C-x h followed by C-M-\). Notice how different syntactical elements are highlighted in
different colors, if you have set up support for font-lock.

Let’s check out two particular editing features of IDLWAVE. Place the cursor after the
end statement of the for loop and press 〈SPC〉. IDLWAVE blinks back to the beginning of
the block and changes the generic end to the specific endfor automatically. Now place the
cursor in any line you would like to split and press M-〈RET〉. The line is split at the cursor
position, with the continuation ‘$’ and indentation all taken care of. Use C-/ to undo the
last change.

The procedure plot_wday is supposed to plot the weekday of a given date for the first
10 years of the 21st century. As in most code, there are a few bugs, which we are going to
use IDLWAVE to help us fix.

First, let’s launch the IDLWAVE shell. You do this with the command C-c C-s. The
Emacs window will split and display IDL running in a shell interaction buffer. Type a few
commands like print,!PI to convince yourself that you can work there just as well as in a
terminal, or the IDLDE. Use the arrow keys to cycle through your command history. Are
we having fun now?

Now go back to the source window and type C-c C-d C-c to compile the program. If you
watch the shell buffer, you see that IDLWAVE types ‘.run tutorial.pro’ for you. But the
compilation fails because there is a comma in the line ‘years=...’. The line with the error
is highlighted and the cursor positioned at the error, so remove the comma (you should only
need to hit Delete!). Compile again, using the same keystrokes as before. Notice that the
file is automatically saved for you. This time everything should work fine, and you should
see the three routines compile.

Now we want to use the command to plot the day of the week on January 1st. We could
type the full command ourselves, but why do that? Go back to the shell window, type
‘plot_’ and hit 〈TAB〉. After a bit of a delay (while IDLWAVE initializes its routine info
database, if necessary), the window will split to show all procedures it knows starting with
that string, and plot_wday should be one of them. Saving the buffer alerted IDLWAVE
about this new routine. Click with the middle mouse button on plot_wday and it will be
copied to the shell buffer, or if you prefer, add ‘w’ to ‘plot_’ to make it unambiguous, hit
〈TAB〉 again, and the full routine name will be completed. Now provide the two arguments:

plot_wday,1,1

and press 〈RET〉. This fails with an error message telling you the YT keyword to plot
is ambiguous. What are the allowed keywords again? Go back to the source window and
put the cursor into the ‘plot’ line, and press C-c ?. This shows the routine info window for
the plot routine, which contains a list of keywords, along with the argument list. Oh, we
wanted YTITLE. Fix that up. Recompile with C-c C-d C-c. Jump back into the shell with
C-c C-s, press the 〈UP〉 arrow to recall the previous command and execute again.

This time we get a plot, but it is pretty ugly – the points are all connected with a line.
Hmm, isn’t there a way for plot to use symbols instead? What was that keyword? Position
the cursor on the plot line after a comma (where you’d normally type a keyword), and hit
M-〈Tab〉. A long list of plot’s keywords appears. Aha, there it is, PSYM. Middle click to insert
it. An ‘=’ sign is included for you too. Now what were the values of PSYM supposed to

Chapter 3: Getting Started (Tutorial) 5

be? With the cursor on or after the keyword, press M-? for online help (alternatively, you
could have right clicked on the colored keyword itself in the completion list). The online
help window will pop up showing the documentation for the PYSM keyword. OK, let’s use
diamonds=4. Fix this, recompile (you know the command by now: C-c C-d C-c, go back to
the shell (if it’s vanished, you know the command to recall it by now: C-c C-s) and execute
again. Now things look pretty good.

Lets try a different day - how about April fool’s day?
plot_wday,1,4

Oops, this looks very wrong. All April fool’s days cannot be Fridays! We’ve got a bug
in the program, perhaps in the daynr function. Lets put a breakpoint on the last line
there. Position the cursor on the ‘return, d+...’ line and press C-c C-d C-b. IDL sets
a breakpoint (as you see in the shell window), and the line is highlighted in some way.
Back to the shell buffer, re-execute the previous command. IDL stops at the line with the
breakpoint. Now hold down the SHIFT key and click with the middle mouse button on
a few variables there: ‘d’, ‘y’, ‘m’, ‘y1’, etc. Maybe d isn’t the correct type. CONTROL-
SHIFT middle-click on it for help. Well, it’s an integer, so that’s not the problem. Aha,
‘y1’ is zero, but it should be the year, depending on delta. Shift click ‘delta’ to see that
it’s 0. Below, we see the offending line: ‘y1=y*delta...’ the multiplication should have
been a minus sign! So fix the line to read:

y1 = y - delta

Now remove all breakpoints: C-c C-d C-a. Recompile and rerun the command. Every-
thing should now work fine. How about those leap years? Change the code to plot 100
years and see that every 28 years, the sequence of weekdays repeats.

3.2 Lesson II: Customization

Emacs is probably the most customizable piece of software available, and it would be
a shame if you did not make use of this and adapt IDLWAVE to your own preferences.
Customizing Emacs or IDLWAVE is accomplished by setting Lisp variables in the ‘.emacs’
file in your home directory – but do not be dismayed; for the most part, you can just copy
and work from the examples given here.

Lets first use a boolean variable. These are variables which you turn on or off, much like
a checkbox. A value of ‘t’ means on, a value of ‘nil’ means off. Copy the following line
into your ‘.emacs’ file, exit and restart Emacs.

(setq idlwave-reserved-word-upcase t)

When this option is turned on, each reserved word you type into an IDL source buffer
will be converted to upper case when you press 〈SPC〉 or 〈RET〉 right after the word. Try it
out! ‘if’ changes to ‘IF’, ‘begin’ to ‘BEGIN’. If you don’t like this behavior, remove the
option again from your ‘.emacs’ file.

You likely have your own indentation preferences for IDL code. For example, I like to
indent the main block of an IDL program from the margin, different from the conventions
used by RSI. Also, I’d like to use only 3 spaces as indentation between BEGIN and END. Try
the following lines in ‘.emacs’

(setq idlwave-main-block-indent 2)
(setq idlwave-block-indent 3)

Chapter 3: Getting Started (Tutorial) 6

(setq idlwave-end-offset -3)

Restart Emacs, take the program we developed in the first part of this tutorial and
re-indent it with C-c h and C-M-\. You may want to keep these lines in ‘.emacs’, with
values adjusted to your likings. If you want to get more information about any of these
variables, type, e.g., C-h v idlwave-main-block-indent 〈RET〉. To find which variables
can be customized, look for items marked ‘User Option:’ throughout this manual.

If you cannot seem to master this Lisp stuff, there is another, more user-friendly way to
customize all the IDLWAVE variables. You can access it through the IDLWAVE menu in one
of the ‘.pro’ buffers, option Customize->Browse IDLWAVE Group. Here you’ll be presented
with all the various variables grouped into categories. You can navigate the hierarchy (e.g.
Idlwave Code Formatting->Idlwave Main Block Indent), read about the variables, change
them, and ‘Save for Future Sessions’. Few of these variables need customization, but you
can exercise considerable control over IDLWAVE’s functionality with them.

You may also find the key bindings used for the debugging commands too long and
complicated. Often we have heard, “Do I really have to type C-c C-d C-c to get a single
simple command?” Due to Emacs rules and conventions, shorter bindings cannot be default,
but you can enable them. First, there is a way to assign all debugging commands in a single
sweep to other combinations. The only problem is that we have to use something which
Emacs does not need for other important commands. A good option is to execute debugging
commands by holding down 〈CONTROL〉 and 〈SHIFT〉 while pressing a single character: C-S-b
for setting a breakpoint, C-S-c for compiling the current source file, C-S-a for deleting all
breakpoints. You can have this with

(setq idlwave-shell-debug-modifiers ’(shift control))

If you have a special keyboard with for example a 〈HYPER〉 key, you could even shorten
that:

(setq idlwave-shell-debug-modifiers ’(hyper))

instead to get compilation on H-c.

You can also assign specific commands to keys. This you must do in the mode-hook, a
special function which is run when a new buffer gets set up. Keybindings can only be done
when the buffer exists. The possibilities for key customization are endless. Here we set
function keys f5-f8 to common debugging commands.

;; First for the source buffer
(add-hook ’idlwave-mode-hook

(lambda ()
(local-set-key [f5] ’idlwave-shell-break-here)
(local-set-key [f6] ’idlwave-shell-clear-current-bp)
(local-set-key [f7] ’idlwave-shell-cont)
(local-set-key [f8] ’idlwave-shell-clear-all-bp)))

;; Then for the shell buffer
(add-hook ’idlwave-shell-mode-hook

(lambda ()
(local-set-key [f5] ’idlwave-shell-break-here)
(local-set-key [f6] ’idlwave-shell-clear-current-bp)
(local-set-key [f7] ’idlwave-shell-cont)
(local-set-key [f8] ’idlwave-shell-clear-all-bp)))

Chapter 3: Getting Started (Tutorial) 7

3.3 Lesson III: Library Catalog

We have already used the routine info display in the first part of this tutorial. This was
the key C-c ? which displays information about the IDL routine near the cursor position.
Wouldn’t it be nice to have the same available for your own library routines and for the
huge amount of code in major extension libraries like JHUPL or the IDL-Astro library?
To do this, you must give IDLWAVE a chance to study these routines first. We call this
Building the library catalog.

From the IDLWAVE entry in the menu bar, select Routine Info/Select Catalog
Directories. If necessary, start the shell first with C-c C-s (see Section 5.1 [Starting the
Shell], page 23). IDLWAVE will find out about the IDL !PATH variable and offer a list of
directories on the path. Simply select them all (or whichever you want) and click on the
‘Scan&Save’ button. Then go for a cup of coffee while IDLWAVE collects information for
each and every IDL routine on your search path. All this information is written to the file
‘.idlcat’ in your home directory and will from now one be automatically loaded whenever
you use IDLWAVE. You may find it necessary to rebuild the catalog on occasion as your
local libraries change. Try to use routine info (C-c ?) or completion (M-<TAB>) while on
any routine or partial routine name you know to be located in the library. E.g., if you have
scanned the IDL-Astro library:

a=readf〈M-<TAB>〉

expands to ‘readfits(’. Then try
a=readfits(〈C-c ?〉

and you get:
Usage: Result = READFITS(filename, header, heap)
...

I hope you made it until here. Now you are set to work with IDLWAVE. On the way you
will want to change other things, and to learn more about the possibilities not discussed
in this short tutorial. Read the manual, look at the documentation strings of interesting
variables (with C-h v idlwave<-variable-name> 〈RET〉) and ask the remaining questions
on the newsgroup comp.lang.idl-pvwave.

Chapter 4: The IDLWAVE Major Mode 8

4 The IDLWAVE Major Mode

The IDLWAVE major mode supports editing IDL source files. In this chapter we describe
the main features of the mode and how to customize them.

4.1 Code Formatting

4.1.1 Code Indentation

Like all Emacs programming modes, IDLWAVE performs code indentation. The 〈TAB〉
key indents the current line relative to context. 〈LFD〉 insert a newline and indents the
new line. The indentation is governed by a number of variables. IDLWAVE indents blocks
(between PRO/FUNCTION/BEGIN and END), and continuation lines.

Continuation lines normally receive a fixed indentation, but in pro/function definition
statements and in procedure calls, continuation lines are aligned with the first character
after the routine name. In lines with unmatched opening parenthesis, the indentation is
given by the opening parenthesis. Here is an example.

function foo, a, b, $
c, d

bar = sin(a + b + $
c + d)

end

To re-indent a larger portion of code (e.g. when working with foreign code written
with different conventions), use C-M-\ (indent-region) after marking the relevant code.
Useful marking commands are C-x h (the entire file) or C-M-h (the current subprogram).
See Section 4.9 [Actions], page 19, for information how to impose additional formatting
conventions on foreign code.

User Optionidlwave-main-block-indent (0)
Extra indentation for the main block of code. That is the block between the FUNC-
TION/PRO statement and the END statement for that program unit.

User Optionidlwave-block-indent (4)
Extra indentation applied to block lines. If you change this, you probably also want
to change idlwave-end-offset.

User Optionidlwave-end-offset (-4)
Extra indentation applied to block END lines. A value equal to negative idlwave-
block-indent will make END lines line up with the block BEGIN lines.

User Optionidlwave-continuation-indent (2)
Extra indentation applied to normal continuation lines.

User Optionidlwave-indent-to-open-paren (t)
Non-nil means, indent continuation lines to innermost open parenthesis.

Chapter 4: The IDLWAVE Major Mode 9

4.1.2 Comment Indentation

In IDL, lines starting with a ‘;’ are called comment lines. Comment lines are indented
as follows:

;;; The indentation of lines starting with three semicolons remains unchanged.
;; Lines starting with two semicolons are indented like the surrounding code.
; Lines starting with a single semicolon are indent to a minimum column.

The indentation of comments starting in column 0 is never changed.

User Optionidlwave-no-change-comment
The indentation of a comment starting with this regexp will not be changed.

User Optionidlwave-begin-line-comment
A comment anchored at the beginning of line.

User Optionidlwave-code-comment
A comment that starts with this regexp is indented as if it is a part of IDL code.

4.1.3 Continuation Lines and Filling

In IDL, a newline character terminates a statement unless preceded by a ‘$’. If you
would like to start a continuation line, use M-〈RET〉, which calls the command idlwave-
split-line. It inserts the continuation character ‘$’, terminates the line and indents the
new line. The command M-〈RET〉 can also be invoked inside a string to split it at that point,
in which case the ‘+’ concatenation operator is used.

When filling comment paragraphs, IDLWAVE overloads the normal filling functions and
uses a function which creates the hanging paragraphs customary in IDL routine headers.
When auto-fill-mode is turned on (toggle with C-c C-a), comments will be auto-filled. If
the first line of a paragraph contains a match for idlwave-hang-indent-regexp (a dash-
space by default), subsequent lines are positioned to line up after it, as in the following
example.

; INPUTS:
; x - an array containing
; lots of interesting numbers.
;
; y - another variable where
; a hanging paragraph is used
; to describe it.

You also refill a comment paragraph with M-q.

User Optionidlwave-fill-comment-line-only (t)
Non-nil means auto fill will only operate on comment lines.

User Optionidlwave-auto-fill-split-string (t)
Non-nil means auto fill will split strings with the IDL ‘+’ operator.

Chapter 4: The IDLWAVE Major Mode 10

User Optionidlwave-split-line-string (t)
Non-nil means idlwave-split-line will split strings with ‘+’.

User Optionidlwave-hanging-indent (t)
Non-nil means comment paragraphs are indented under the hanging indent given by
idlwave-hang-indent-regexp match in the first line of the paragraph.

User Optionidlwave-hang-indent-regexp ("- ")
Regular expression matching the position of the hanging indent in the first line of a
comment paragraph.

User Optionidlwave-use-last-hang-indent (nil)
Non-nil means use last match on line for idlwave-indent-regexp.

4.1.4 Syntax Highlighting

Highlighting of keywords, comments, strings etc. can be accomplished with font-lock.
If you are using global-font-lock-mode (in Emacs), or have font-lock turned on in any
other buffer in XEmacs, it should also automatically work in IDLWAVE buffers. If not, you
can enforce it with the following line in your ‘.emacs’

(add-hook ’idlwave-mode-hook ’turn-on-font-lock)

IDLWAVE supports 3 increasing levels of syntax highlighting. The variable font-lock-
maximum-decoration determines which level is selected. Individual categories of special
tokens can be selected for highlighting using the variable idlwave-default-font-lock-
items.

User Optionidlwave-default-font-lock-items
Items which should be fontified on the default fontification level 2.

4.2 Routine Info

IDL comes bundled with more than one thousand procedures, functions and object
methods, and large libraries typically contain hundreds or even thousands more. This large
set makes it difficult to remember the calling sequence and keywords of a specific command,
but IDLWAVE can help. It contains a list of all builtin routines, with calling sequences
and keywords1. It also scans Emacs buffers and library files for routine definitions, and
queries the IDLWAVE-Shell for routines currently compiled in the shell. This information
is updated automatically, and so should usually be current. To force a global update and
refresh the routine information, use C-c C-i (idlwave-update-routine-info).

To display the information about a routine, press C-c ?, which calls the command
idlwave-routine-info. When the current cursor position is on the name or in the ar-
gument list of a procedure or function, information will be displayed about the routine. For
example, consider the indicated cursor positions in the following line:

1 This list was created by scanning the IDL manual and might contain (very few) errors. Please report
any detected errors to the maintainer, so that they can be fixed.

Chapter 4: The IDLWAVE Major Mode 11

plot,x,alog(x+5*sin(x) + 2),
1 2 3 4 5 6 7 8

On positions 1,2 and 8, information about the ‘plot’ procedure will be shown. On
positions 3,4, and 7, the ‘alog’ function will be described, while positions 5 and 6 will select
the ‘sin’ function. When you ask for routine information about an object method, and the
method exists in several classes, IDLWAVE queries for the class of the object.

The description displayed contains the calling sequence, the list of keywords and the
source location of this routine. It looks like this:

Usage: XMANAGER, NAME, ID
Keywords: BACKGROUND CATCH CLEANUP EVENT_HANDLER GROUP_LEADER

JUST_REG MODAL NO_BLOCK
Source: SystemLib [CSB] /soft1/idl53/lib/xmanager.pro

If a definition of this routine exists in several files accessible to IDLWAVE, several
‘Source’ lines will point to the different files. This may indicate that your routine is shadow-
ing a library routine, which may or may not be what you want (see Section A.4 [Load-Path
Shadows], page 33). The information about the calling sequence and keywords is derived
from the first source listed. Library routines are supported only if you have scanned your
local IDL libraries (see Section A.3 [Library Catalog], page 32). The source entry consists
of a source category, a set of flags and the path to the source file. The following categories
exist:

System A system routine of unknown origin. When the system library has been
scanned (see Section A.3 [Library Catalog], page 32), this category will
automatically split into the next two.

Builtin A builtin system routine with no source code available.
SystemLib A library system routine in the official lib directory ‘!DIR/lib’.
Obsolete A library routine in the official lib directory ‘!DIR/lib/obsolete’.
Library A routine in a file on IDL’s search path !PATH.
Other Any other routine with a file not known to be on the search path.
Unresolved An otherwise unkown routine the shell lists as unresolved (referenced, but

not compiled).
You can create additional categories based on the routine’s filepath with the variable

idlwave-special-lib-alist. This is useful for easy discrimination of various libraries, or
even versions of the same library.

The flags [CSB] indicate the source of the information IDLWAVE has regarding the file:
from a library catalog ([C--], see Section A.3 [Library Catalog], page 32), from the IDL
Shell ([-S-]) or from an Emacs buffer ([--B]). Combinations are possible (a compiled
library routine visited in a buffer might read [CSB]. If a file contains multiple definitions
of the same routine, the file name will be prefixed with ‘(Nx)’ where ‘N’ is the number of
definitions.

Some of the text in the ‘*Help*’ routine info buffer will be active (it is highlighted when
the mouse moves over it). Typically, clicking with the right mouse button invokes online
help lookup, and clicking with the middle mouse button inserts keywords or visits files:

Usage If online help is installed, a click with the right mouse button on the Us-
age: line will access the help for the routine (see Section 4.3 [Online Help],
page 12).

Chapter 4: The IDLWAVE Major Mode 12

Keyword Online help about keywords is also available with the right mouse button.
Clicking on a keyword with the middle mouse button will insert this key-
word in the buffer from where idlwave-routine-info was called. Holding
down 〈SHIFT〉 while clicking also adds the initial ‘/’.

Source Clicking with the middle mouse button on a ‘Source’ line finds the source
file of the routine and visits it in another window. Another click on the
same line switches back to the buffer from which C-c ? was called. If you
use the right mouse button, the source will not be visited by a buffer, but
displayed in the online help window.

Classes The Classes line is only included in the routine info window if the current
class inherits from other classes. You can click with the middle mouse
button to display routine info about the current method in other classes on
the inheritance chain.

User Optionidlwave-resize-routine-help-window (t)
Non-nil means, resize the Routine-info ‘*Help*’ window to fit the content.

User Optionidlwave-special-lib-alist
Alist of regular expressions matching special library directories.

User Optionidlwave-rinfo-max-source-lines (5)
Maximum number of source files displayed in the Routine Info window.

4.3 Online Help

For IDL system routines, RSI provides extensive documentation. IDLWAVE can access
an ASCII version of this documentation very quickly and accurately. This is much faster
than using the IDL online help application, because usually IDLWAVE gets you to the
right place in the docs directly, without any additional browsing and scrolling. For this
online help to work, an ASCII version of the IDL documentation, which is not part of the
standalone IDLWAVE distribution, is required. The necessary help files can be downloaded
from the maintainers webpage. The text extracted from the PDF files is fine for normal
text, but graphics and multiline equations will not be well formatted. See also Section A.5
[Documentation Scan], page 34.

Occasionally RSI releases a synopsis of new features in an IDL release, without simul-
taneously updating the documentation files, instead preferring a What’s New document
which describes the changes. These updates are incorporated directly into the IDLWAVE
online help, and are delimited in <NEW>..</NEW> blocks.

For routines which are not documented in the IDL manual (for example your own rou-
tines), the source code is used as help text. If the requested information can be found in a
(more or less) standard DocLib file header, IDLWAVE shows the header (scrolling down to
appropriate keywords, e.g.). Otherwise the routine definition statement (pro/function) is
shown.

In any IDL program (or, as with most IDLWAVE commands, in the IDL Shell), press
M-? (idlwave-context-help), or click with S-mouse-3 to access context sensitive online
help. The following locations are recognized as context:

http://idlwave.org/

Chapter 4: The IDLWAVE Major Mode 13

Routine name The name of a routine (function, procedure, method).
Keyword Parameter A keyword parameter of a routine.
System Variable System variables like !DPI.
IDL Statement Statements like PRO, REPEAT, COMPILE_OPT, etc.
Class name A class name in an OBJ_NEW call.
Class Init Beyond the class name in an OBJ_NEW call.
Executive Command An executive command like .RUN. Mostly useful in the shell.
Default The routine that would be selected for routine info display.

Note that the OBJ_NEW function is special in that the help displayed depends on the cursor
position: If the cursor is on the ‘OBJ_NEW’, this function is described. If it is on the class
name inside the quotes, the documentation for the class is pulled up. If the cursor is after
the class name, anywhere in the argument list, the documentation for the corresponding
Init method and its keywords is targeted.
Apart from source buffers, there are two more places from which online help can be accessed.
• Online help for routines and keywords can be accessed through the Routine Info display.

Click with mouse-3 on an item to see the corresponding help (see Section 4.2 [Routine
Info], page 10).

• When using completion and Emacs pops up a window with possible completions, click-
ing with mouse-3 on a completion item invokes help on that item (see Section 4.4
[Completion], page 14).

In both cases, a blue face indicates that the item is documented in the IDL manual, but an
attempt will be made to visit non-blue items in the directly in the originating source file.

The help window is normally displayed in a separate frame. The following commands
can be used to navigate inside the help system.
〈SPACE〉 Scroll forward one page.
〈RET〉 Scroll forward one line.
〈DEL〉 Scroll back one page.
n, p Browse to the next or previous topic (in physical sequence).
b, f Move back and forward through the help topic history.
c Clear the history.
mouse-2 Follow a link. Active links are displayed in a different font. Items under

See Also are active, and classes have links to their methods and back.
o Open a topic. The topic can be selected with completion.
* Load the whole help file into Emacs, for global text searches.
q Kill the help window.

When the help text is a source file, the following commands are also available.
h Jump to DocLib Header of the routine whose source is displayed as help.
H Jump to the first DocLib Header in the file.
. (Dot) Jump back and forth between the routine definition (the pro/function

statement) and the description of the help item in the DocLib header.
F Fontify the buffer like source code. See the variable idlwave-help-

fontify-source-code.

User Optionidlwave-help-directory
The directory where idlw-help.txt and idlw-help.el are stored.

Chapter 4: The IDLWAVE Major Mode 14

User Optionidlwave-help-use-dedicated-frame (t)
Non-nil means, use a separate frame for Online Help if possible.

User Optionidlwave-help-frame-parameters
The frame parameters for the special Online Help frame.

User Optionidlwave-max-popup-menu-items (20)
Maximum number of items per pane in popup menus.

User Optionidlwave-extra-help-function
Function to call for help if the normal help fails.

User Optionidlwave-help-fontify-source-code (nil)
Non-nil means, fontify source code displayed as help.

User Optionidlwave-help-source-try-header (t)
Non-nil means, try to find help in routine header when displaying source file.

User Optionidlwave-help-link-face
The face for links in IDLWAVE online help.

User Optionidlwave-help-activate-links-aggressively (t)
Non-nil means, make all possible links in help window active.

4.4 Completion

IDLWAVE offers completion for class names, routine names, keywords, system variables,
class structure tags and file names. As in many programming modes, completion is bound to
M-〈TAB〉. Completion uses the same internal information as routine info, so when necessary
it can be updated with C-c C-i (idlwave-update-routine-info).

The completion function is context sensitive and figures out what to complete at point.
Here are example lines and what M-〈TAB〉 would try to complete when the cursor is on the
position marked with a ‘_’.

plo_ Procedure
x = a_ Function
plot,xra_ Keyword of plot procedure
plot,x,y,/x_ Keyword of plot procedure
plot,min(_ Keyword of min function
obj -> a_ Object method (procedure)
a(2,3) = obj -> a_ Object method (function)
x = obj_new(’IDL_ Class name
x = obj_new(’MyCl’,a_ Keyword to Init method in class MyCl
pro A_ Class name
pro _ Fill in Class:: of first method in this file
!v_ System variable
!version.t_ Structure tag of system variable

Chapter 4: The IDLWAVE Major Mode 15

self.g_ Class structure tag in methods
name = ’a_ File name (default inside quotes)

The only place where completion is ambiguous is procedure/function keywords versus
functions. After ‘plot,x_’, IDLWAVE will always assume a keyword to plot. You can force
completion of a function name such a location with a prefix arg: C-u M-〈TAB〉.

If the list of completions is too long to fit in the ‘*Completions*’ window, the window
can be scrolled by pressing M-〈TAB〉 repeatedly. Online help (if installed) for each possible
completion is available by clicking with mouse-3 on the item. Items for which system online
help (from the IDL manual) is available will be displayed in a different font. For other items,
the corresponding source code or DocLib header is available as help text.

The case of the completed words is determined by what is already in the buffer. When
the partial word being completed is all lower case, the completion will be lower case as well.
If at least one character is upper case, the string will be completed in upper case or mixed
case. The default is to use upper case for procedures, functions and keywords, and mixed
case for object class names and methods, similar to the conventions in the IDL manuals.
These defaults can be changed with the variable idlwave-completion-case.

User Optionidlwave-completion-case
Association list setting the case (UPPER/lower/Capitalized/...) of completed words.

User Optionidlwave-completion-force-default-case (nil)
Non-nil means, completion will always honor the settings in idlwave-completion-
case. When nil (the default), lower case strings will be completed to lower case.

User Optionidlwave-complete-empty-string-as-lower-case (nil)
Non-nil means, the empty string is considered lower case for completion.

User Optionidlwave-keyword-completion-adds-equal (t)
Non-nil means, completion automatically adds ‘=’ after completed keywords.

User Optionidlwave-function-completion-adds-paren (t)
Non-nil means, completion automatically adds ‘(’ after completed function. A value
of ‘2’ means, also add the closing parenthesis and position cursor between the two.

User Optionidlwave-completion-restore-window-configuration (t)
Non-nil means, restore window configuration after successful completion.

User Optionidlwave-highlight-help-links-in-completion (t)
Non-nil means, highlight completions for which system help is available.

Object Method Completion and Class Ambiguity

An object method is not uniquely determined without the object’s class. Since the class
is almost always omitted in the calling source, IDLWAVE considers all available meth-
ods in all classes as possible method name completions. The combined keywords of the
current method in all available classes will be considered for keyword completion. In the

Chapter 4: The IDLWAVE Major Mode 16

‘*Completions*’ buffer, the matching classes will be shown next to each item (see option
idlwave-completion-show-classes). As a special case, the class of an object called ‘self’
object is always the class of the current routine. All classes it inherits from are considered
as well where appropriate.

You can also call idlwave-complete with a prefix arg: C-u M-〈TAB〉. IDLWAVE will then
prompt you for the class in order to narrow down the number of possible completions. The
variable idlwave-query-class can be configured to make this behavior the default (not
recommended). After you have specified the class for a particular statement (e.g. when
completing the method), IDLWAVE can remember it for the rest of the editing session.
Subsequent completions in the same statement (e.g. keywords) can then reuse this class
information. Remembering the class works by placing a text property in the object operator
‘->’. This is not enabled by default - the variable idlwave-store-inquired-class can be
used to turn it on.

User Optionidlwave-support-inheritance (t)
Non-nil means, consider inheritance during completion, online help etc.

User Optionidlwave-completion-show-classes (1)
Non-nil means, show classes in ‘*Completions*’ buffer when completing object
methods and keywords.

User Optionidlwave-completion-fontify-classes (t)
Non-nil means, fontify the classes in completions buffer.

User Optionidlwave-query-class (nil)
Association list governing query for object classes during completion.

User Optionidlwave-store-inquired-class (nil)
Non-nil means, store class of a method call as text property on ‘->’.

User Optionidlwave-class-arrow-face
Face to highlight object operator arrows ‘->’ which carry a class text property.

4.5 Routine Source

Apart from clicking on a Source: line in the routine info window, there is also another
way to find the source file of a routine. The command C-c C-v (idlwave-find-module)
asks for a module name, offering the same default as idlwave-routine-info would have
used from nearby contents. In the minibuffer, specify a complete routine name (including
any class part). IDLWAVE will display the source file in another window, positioned at the
routine in question.

Since getting the source of a routine into a buffer is so easy with IDLWAVE, too many
buffers visiting different IDL source files are sometimes created. The special command C-c

C-k (idlwave-kill-autoloaded-buffers) can be used to remove these buffers.

Chapter 4: The IDLWAVE Major Mode 17

4.6 Resolving Routines

The key sequence C-c = calls the command idlwave-resolve and sends the line
‘RESOLVE_ROUTINE, ’routine name’’ to IDL in order to resolve (compile) it. The default
routine to be resolved is taken from context, but you get a chance to edit it.

idlwave-resolve is one way to get a library module within reach of IDLWAVE’s routine
info collecting functions. A better way is to scan (parts of) the library (see Section A.3
[Library Catalog], page 32). Routine info on library modules will then be available without
the need to compile the modules first, and even without a running shell.

See Appendix A [Sources of Routine Info], page 31, for more information about how
IDLWAVE collects data about routines, and how to update this information.

4.7 Code Templates

IDLWAVE can insert IDL code templates into the buffer. For a few templates, this is
done with direct keybindings:
C-c C-c CASE statement template
C-c C-f FOR loop template
C-c C-r REPEAT loop template
C-c C-w WHILE loop template

All code templates are also available as abbreviations (see Section 4.8 [Abbreviations],
page 17).

4.8 Abbreviations

Special abbreviations exist to enable rapid entry of commonly used commands. Emacs
abbreviations are expanded by typing text into the buffer and pressing 〈SPC〉 or 〈RET〉. The
special abbreviations used to insert code templates all start with a ‘\’ (the backslash), or,
optionally, any other character set in idlwave-abbrev-start-char. IDLWAVE ensures
that abbreviations are only expanded where they should be (i.e., not in a string or com-
ment), and permits the point to be moved after an abbreviation expansion – very useful for
positioning the mark inside of parentheses, etc.

Special abbreviations are pre-defined for code templates and other useful items. To visit
the full list of abbreviations, use M-x idlwave-list-abbrevs.

Template abbreviations:
\pr PROCEDURE template
\fu FUNCTION template
\c CASE statement template
\f FOR loop template
\r REPEAT loop template
\w WHILE loop template
\i IF statement template
\elif IF-ELSE statement template
\b BEGIN

String abbreviations:

Chapter 4: The IDLWAVE Major Mode 18

\b begin
\cb byte()
\cc complex()
\cd double()
\cf float()
\cl long()
\co common
\cs string()
\cx fix()
\e else
\ec endcase
\ee endelse
\ef endfor
\ei endif else if
\el endif else
\en endif
\er endrep
\es endswitch
\ew endwhile
\g goto,
\h help,
\ine if n_elements() eq 0 then
\inn if n_elements() ne 0 then
\k keyword_set()
\n n_elements()
\np n_params()
\oi on_ioerror,
\or openr,
\ou openu,
\ow openw,
\p print,
\pt plot,
\re read,
\rf readf,
\rt return
\ru readu,
\s size()
\sc strcompress()
\sl strlowcase()
\sm strmid()
\sn strlen()
\sp strpos()
\sr strtrim()
\st strput()
\su strupcase()
\t then
\u until

Chapter 4: The IDLWAVE Major Mode 19

\wc widget_control,
\wi widget_info()
\wu writeu,

You can easily add your own abbreviations with define-abbrev inserted your mode
hook, e.g.:

(add-hook ’idlwave-mode-hook
(lambda ()

(define-abbrev idlwave-mode-abbrev-table
(concat idlwave-abbrev-start-char "ik") "if keyword_set() then"
(idlwave-keyword-abbrev 6))

Notice how the abbreviation start character is prepended to ik, and that the argument
6 to idlwave-keyword-abbrev specifies how far back to move the point (to put between
the parentheses).

The abbreviations are expanded in upper or lower case, depending upon
the variables idlwave-abbrev-change-case and (for reserved word templates)
idlwave-reserved-word-upcase.

User Optionidlwave-abbrev-start-char ("\")
A single character string used to start abbreviations in abbrev mode.

User Optionidlwave-abbrev-move (t)
Non-nil means the abbrev hook can move point, e.g. to end up between the paren-
thesis of a function call.

4.9 Actions

Actions are special commands which are executed automatically while you write code in
order to check the structure of the program or to enforce coding standards. Most actions
which have been implemented in IDLWAVE are turned off by default, assuming that the
average user wants her code the way she writes it. But if you are a lazy typist and want
your code to adhere to certain standards, they can be helpful.

Action can be applied in three ways:
• Some actions are applied directly while typing. For example, pressing ‘=’ can run a

check to make sure that this operator is surrounded by spaces and insert these spaces
if necessary. Pressing 〈SPC〉 after a reserved word can call a command to change the
word to upper case.

• When a line is re-indented with 〈TAB〉, actions can be applied to the entire line. To
enable this, the variable idlwave-do-actions must be non-nil.

• Action can also be applied to a larger piece of code, e.g. in order to convert foreign
code to your own style. To do this, mark the relevant part of the code and execute
M-x expand-region-abbrevs. Useful marking commands are C-x h (the entire file)
or C-M-h (the current subprogram). See Section 4.1.1 [Code Indentation], page 8, for
information how to adjust the indentation of the code.

User Optionidlwave-do-actions (nil)
Non-nil means performs actions when indenting.

Chapter 4: The IDLWAVE Major Mode 20

4.9.1 Block Boundary Check

Whenever you type an END statement, IDLWAVE finds the corresponding start of the
block and the cursor blinks back to that location for a second. If you have typed a specific
END, like ENDIF or ENDCASE, you get a warning if that kind of END does not match the type
of block it terminates.

Set the variable idlwave-expand-generic-end in order to have all generic END state-
ments automatically expanded to a specific type. You can also type C-c] to close the
current block by inserting the appropriate END statement.

User Optionidlwave-show-block (t)
Non-nil means point blinks to block beginning for idlwave-show-begin.

User Optionidlwave-expand-generic-end (t)
Non-nil means expand generic END to ENDIF/ENDELSE/ENDWHILE etc.

User Optionidlwave-reindent-end (t)
Non-nil means re-indent line after END was typed.

4.9.2 Padding Operators

Some operators can be automatically surrounded by spaces. This can happen when the
operator is typed, or also later when the line is indented. IDLWAVE contains this setting for
the operators ‘&’, ‘<’, ‘>’, ‘,’, ‘=’, and ‘->’2, but the feature is turned off by default. If you
want to turn it on, customize the variables idlwave-surround-by-blank and idlwave-
do-actions. You can also define similar actions for other operators by using the function
idlwave-action-and-binding in the mode hook. For example, to enforce space padding
of the ‘+’ and ‘*’ operators, try this in ‘.emacs’

(add-hook ’idlwave-mode-hook
(lambda ()

(setq idlwave-surround-by-blank t) ; Turn this type of actions on
(idlwave-action-and-binding "*" ’(idlwave-surround 1 1))
(idlwave-action-and-binding "+" ’(idlwave-surround 1 1))))

User Optionidlwave-surround-by-blank (nil)
Non-nil means, enable idlwave-surround. If non-nil, ‘=’, ‘<’, ‘>’, ‘&’, ‘,’, ‘->’ are
surrounded with spaces by idlwave-surround.

User Optionidlwave-pad-keyword (t)
Non-nil means pad ‘=’ for keywords like assignments.

2 Operators longer than one character can only be padded during line indentation.

Chapter 4: The IDLWAVE Major Mode 21

4.9.3 Case Changes

Actions can be used to change the case of reserved words or expanded abbreviations by
customizing the variables idlwave-abbrev-change-case and idlwave-reserved-word-
upcase. If you want to change the case of additional words automatically, put something
like the following into your ‘.emacs’ file:

(add-hook ’idlwave-mode-hook
(lambda ()

;; Capitalize system vars
(idlwave-action-and-binding idlwave-sysvar ’(capitalize-word 1) t)
;; Capitalize procedure name
(idlwave-action-and-binding "\\<\\(pro\\|function\\)\\>[\t]*\\<"

’(capitalize-word 1) t)
;; Capitalize common block name
(idlwave-action-and-binding "\\<common\\>[\t]+\\<"

’(capitalize-word 1) t)))

For more information, see the documentation string for the function idlwave-action-
and-binding.

User Optionidlwave-abbrev-change-case (nil)
Non-nil means all abbrevs will be forced to either upper or lower case. Legal values
are nil, t, and down.

User Optionidlwave-reserved-word-upcase (nil)
Non-nil means, reserved words will be made upper case via abbrev expansion.

4.10 Documentation Header

The command C-c C-h inserts a standard routine header into the buffer, with the usual
fields for documentation. One of the keywords is ‘MODIFICATION HISTORY’ under which the
changes to a routine can be recorded. The command C-c C-m jumps to the ‘MODIFICATION
HISTORY’ of the current routine or file and inserts the user name with a timestamp.

User Optionidlwave-file-header
The doc-header template or a path to a file containing it.

User Optionidlwave-header-to-beginning-of-file (nil)
Non-nil means, the documentation header will always be at start of file.

User Optionidlwave-timestamp-hook
The hook function used to update the timestamp of a function.

User Optionidlwave-doc-modifications-keyword
The modifications keyword to use with the log documentation commands.

User Optionidlwave-doclib-start
Regexp matching the start of a document library header.

Chapter 4: The IDLWAVE Major Mode 22

User Optionidlwave-doclib-end
Regexp matching the start of a document library header.

4.11 Motion Commands

IDLWAVE supports both ‘Imenu’ and ‘Func-menu’, two packages which make it easy to
jump to the definitions of functions and procedures in the current file.

Several commands allow to move quickly through the structure of an IDL program.
These are
C-M-a Beginning of subprogram
C-M-e End of subprogram
C-c { Beginning of block (stay inside the block)
C-c } End of block (stay inside the block)
C-M-n Forward block (on same level)
C-M-p Backward block (on same level)
C-M-d Down block (enters a block)
C-M-u Backward up block (leaves a block)
C-c C-n Next Statement

4.12 Miscellaneous Options

User Optionidlwave-help-application
The external application providing reference help for programming.

User Optionidlwave-startup-message (t)
Non-nil means display a startup message when idlwave-mode’ is first called.

User Optionidlwave-mode-hook
Normal hook. Executed when a buffer is put into idlwave-mode.

User Optionidlwave-load-hook
Normal hook. Executed when ‘idlwave.el’ is loaded.

Chapter 5: The IDLWAVE Shell 23

5 The IDLWAVE Shell

The IDLWAVE shell is an Emacs major mode which allows to run the IDL program as
an inferior process of Emacs. It can be used to work with IDL interactively, to compile and
run IDL programs in Emacs buffers and to debug these programs. The IDLWAVE shell
uses ‘comint’, an Emacs packages which handles the communication with the IDL program.
Unfortunately IDL for Windows and MacOS does not allow the interaction with Emacs1 -
so the IDLWAVE shell currently only works under Unix.

5.1 Starting the Shell

The IDLWAVE shell can be started with the command M-x idlwave-shell. In idlwave-
mode the function is bound to C-c C-s. It creates a buffer ‘*idl*’ which is used to interact
with the shell. If the shell is already running, C-c C-s will simple switch to the shell
buffer. The command C-c C-l (idlwave-shell-recenter-shell-window) displays the
shell window without selecting it. The shell can also be started automatically when another
command tries to send a command to it. To enable auto start, set the variable idlwave-
shell-automatic-start to t.

In order to create a separate frame for the IDLWAVE shell buffer, call idlwave-shell
with a prefix argument: C-u C-c C-s or C-u C-c C-l. If you always want a dedicated frame
for the shell window, configure the variable idlwave-shell-use-dedicated-frame.

To launch a quick IDLWAVE shell directly from a shell prompt, define an alias with the
following content

emacs -geometry 80x32 -eval "(idlwave-shell ’quick)"

Replace the ‘-geometry 80x32’ option with ‘-nw’ if you prefer the Emacs process to run
directly inside the terminal window.

User Optionidlwave-shell-explicit-file-name (‘idl’)
This is the command to run IDL.

User Optionidlwave-shell-command-line-options
A list of command line options for calling the IDL program.

User Optionidlwave-shell-prompt-pattern
Regexp to match IDL prompt at beginning of a line.

User Optionidlwave-shell-process-name
Name to be associated with the IDL process.

User Optionidlwave-shell-automatic-start (nil)
Non-nil means attempt to invoke idlwave-shell if not already running.

1 Please inform the maintainer if you come up with a way to make the IDLWAVE shell work on these
systems.

Chapter 5: The IDLWAVE Shell 24

User Optionidlwave-shell-initial-commands
Initial commands, separated by newlines, to send to IDL.

User Optionidlwave-shell-save-command-history (t)
Non-nil means preserve command history between sessions.

User Optionidlwave-shell-command-history-file (‘~/.idlwhist’)
The file in which the command history of the idlwave shell is saved.

User Optionidlwave-shell-use-dedicated-frame (nil)
Non-nil means, IDLWAVE should use a special frame to display shell buffer.

User Optionidlwave-shell-frame-parameters
The frame parameters for a dedicated idlwave-shell frame.

User Optionidlwave-shell-raise-frame (t)
Non-nil means, ‘idlwave-shell’ raises the frame showing the shell window.

User Optionidlwave-shell-temp-pro-prefix
The prefix for temporary IDL files used when compiling regions.

User Optionidlwave-shell-mode-hook
Hook for customizing idlwave-shell-mode.

5.2 Using the Shell

The IDLWAVE shell works in the same fashion as other shell modes in Emacs. It provides
command history, command line editing and job control. The 〈UP〉 and 〈DOWN〉 arrows cycle
through the input history just like in an X terminal2. The history is preserved between
emacs sessions. Here is a list of commonly used commands.
〈UP〉 Cycle backwards in input history
〈DOWN〉 Cycle forwards in input history
M-p Cycle backwards in input history matching input
M-n Cycle forwards in input history matching input
M-r Previous input matching a regexp
M-s Next input that matches a regexp
return Send input or copy line to current prompt
C-c C-a Beginning of line; skip prompt
C-c C-u Kill input to beginning of line
C-c C-w Kill word before cursor
C-c C-c Send ^C
C-c C-z Send ^Z

2 This is different from normal Emacs/Comint behavior, but more like an xterm. If you prefer the default
comint functionality, check the variable idlwave-shell-arrows-do-history.

Chapter 5: The IDLWAVE Shell 25

C-c C-\ Send ^\
C-c C-o Delete last batch of process output
C-c C-r Show last batch of process output
C-c C-l List input history

In addition to these standard ‘comint’ commands, idlwave-shell-mode provides many
of the commands which simplify writing IDL code, including abbreviations, online help, and
completion. See Section 4.2 [Routine Info], page 10 and Section 4.3 [Online Help], page 12
and Section 4.4 [Completion], page 14 for more information on these commands.
〈TAB〉 Completion of file names (between quotes and after executive commands

‘.run’ and ‘.compile’), routine names, class names, keywords, system vari-
ables, system variable tags etc. (idlwave-shell-complete).

M-〈TAB〉 Same as 〈TAB〉
C-c ? Routine Info display (idlwave-routine-info)
M-? IDL online help on routine (idlwave-routine-info-from-idlhelp)
C-c C-i Update routine info from buffers and shell (idlwave-update-routine-info)
C-c C-v Find the source file of a routine (idlwave-find-module)
C-c = Compile a library routine (idlwave-resolve)

User Optionidlwave-shell-arrows-do-history (t)
Non-nil means 〈UP〉 and 〈DOWN〉 arrows move through command history like xterm.

User Optionidlwave-shell-comint-settings
Alist of special settings for the comint variables in the IDLWAVE Shell.

User Optionidlwave-shell-file-name-chars
The characters allowed in file names, as a string. Used for file name completion.

User Optionidlwave-shell-graphics-window-size
Size of IDL graphics windows popped up by special IDLWAVE command.

IDLWAVE works in line input mode: You compose a full command line, using all the
power Emacs gives you to do this. When you press 〈RET〉, the whole line is sent to IDL.
Sometimes it is necessary to send single characters (without a newline), for example when
an IDL program is waiting for single character input with the GET_KBRD function. You can
send a single character to IDL with the command C-c C-x (idlwave-shell-send-char).
When you press C-c C-y (idlwave-shell-char-mode-loop), IDLWAVE runs a blocking
loop which accepts characters and immediately sends them to IDL. The loop can be exited
with C-g. It terminates also automatically when the current IDL command is finished.
Check the documentation of the two variables described below for a way to make IDL
programs trigger automatic switches of the input mode.

User Optionidlwave-shell-use-input-mode-magic (nil)
Non-nil means, IDLWAVE should check for input mode spells in output.

User Optionidlwave-shell-input-mode-spells
The three regular expressions which match the magic spells for input modes.

Chapter 5: The IDLWAVE Shell 26

5.3 Debugging IDL Programs

Programs can be compiled, run, and debugged directly from the source buffer in Emacs.
The IDLWAVE shell installs keybindings both in the shell buffer and in all IDL code buffers
of the current Emacs session. On Emacs versions which support this, it also installs a
debugging toolbar. The display of the toolbar can be toggled with C-c C-d C-t (idlwave-
shell-toggle-toolbar).

The debugging keybindings are by default on the prefix key C-c C-d, so for example
setting a breakpoint is done with C-c C-d C-b, compiling a source file with C-c C-d C-c.
If you find this too much work you can choose a combination of modifier keys which is not
used by other commands. For example, if you write in ‘.emacs’

(setq idlwave-shell-debug-modifiers ’(control shift))

a breakpoint can be set by pressing b while holding down shift and control keys, i.e.
C-S-b. Compiling a source file will be on C-S-c, deleting a breakpoint C-S-d etc. In the
remainder of this chapter we will assume that the C-c C-d bindings are active, but each of
these bindings will have an equivalent single-keypress shortcut with the modifiers given in
the idlwave-shell-debug-modifiers variable.

User Optionidlwave-shell-prefix-key (C-c C-d)
The prefix key for the debugging map idlwave-shell-mode-prefix-map.

User Optionidlwave-shell-activate-prefix-keybindings (t)
Non-nil means, debug commands will be bound to the prefix key, like C-c C-d C-b.

User Optionidlwave-shell-debug-modifiers (nil)
List of modifier keys to use for binding debugging commands in the shell and in source
buffers.

User Optionidlwave-shell-use-toolbar (t)
Non-nil means, use the debugging toolbar in all IDL related buffers.

5.3.1 Compiling Programs

In order to compile the current buffer under the IDLWAVE shell, press C-c C-d C-c

(idlwave-save-and-run). This first saves the current buffer and then sends the command
‘.run path/to/file’ to the shell. You can also execute C-c C-d C-c from the shell buffer,
in which case the most recently compiled buffer will be saved and re-compiled.

When developing or debugging a program, it is often necessary to execute the same
command line many times. A convenient way to do this is C-c C-d C-y (idlwave-shell-
execute-default-command-line). This command first resets IDL from a state of inter-
rupted execution by closing all files and returning to the main interpreter level. Then a
default command line is send to the shell. To edit the default command line, call idlwave-
shell-execute-default-command-line with a prefix argument: C-u C-c C-d C-y.

User Optionidlwave-shell-mark-stop-line (t)
Non-nil means, mark the source code line where IDL is currently stopped. The value
decides about the preferred method. Legal values are nil, t, arrow, and face.

Chapter 5: The IDLWAVE Shell 27

User Optionidlwave-shell-overlay-arrow (">")
The overlay arrow to display at source lines where execution halts.

User Optionidlwave-shell-stop-line-face
The face which highlights the source line where IDL is stopped.

5.3.2 Breakpoints and Stepping

You can set breakpoints and step through a program with IDLWAVE. Setting a break-
point in the current line of the source buffer is done with C-c C-d C-b (idlwave-shell-
break-here). With a prefix arg of 1 (i.e. C-1 C-c C-d C-b, the breakpoint gets a /ONCE
keyword, meaning that it will be deleted after first use. With a numeric prefix greater than
one, the breakpoint will only be active the nth time it is hit. To clear the breakpoint in
the current line, use C-c C-d C-d (idlwave-clear-current-bp). When executed from the
shell window, the breakpoint where IDL is currently stopped will be deleted. To clear all
breakpoints, use C-c C-d C-a (idlwave-clear-all-bp). Breakpoint lines are highlighted
in the source code.

Once the program has stopped somewhere, you can step through it. The most important
stepping commands are C-c C-d C-s to execute one line of IDL code; C-c C-d C-n to do
one step but treat procedure and function calls as a single step; C-c C-d C-h to continue
execution to the line where the cursor is in and C-c C-d C-r to continue execution. Here is
a summary of the breakpoint and stepping commands:

C-c C-d C-b Set breakpoint (idlwave-shell-break-here)
C-c C-d C-i Set breakpoint in function named here (idlwave-shell-break-in)
C-c C-d C-d Clear current breakpoint (idlwave-shell-clear-current-bp)
C-c C-d C-a Clear all breakpoints (idlwave-shell-clear-all-bp)
C-c C-d C-s Step, into function calls (idlwave-shell-step)
C-c C-d C-n Step, over function calls (idlwave-shell-stepover)
C-c C-d C-k Skip one statement (idlwave-shell-skip)
C-c C-d C-u Continue to end of block (idlwave-shell-up)
C-c C-d C-m Continue to end of function (idlwave-shell-return)
C-c C-d C-o Continue past end of function (idlwave-shell-out)
C-c C-d C-h Continue to line at cursor position (idlwave-shell-to-here)
C-c C-d C-r Continue execution to next breakpoint (idlwave-shell-cont)
C-c C-d C-up Show higher level in calling stack (idlwave-shell-stack-up)
C-c C-d C-down Show lower level in calling stack (idlwave-shell-stack-down)

User Optionidlwave-shell-mark-breakpoints (t)
Non-nil means, mark breakpoints in the source file buffers. The value indicates the
preferred method. Legal values are nil, t, face, and glyph.

User Optionidlwave-shell-breakpoint-face
The face for breakpoint lines in the source code if idlwave-shell-mark-breakpoints
has the value face.

Chapter 5: The IDLWAVE Shell 28

5.3.3 Walking the Calling Stack

When debugging a program, it can be very useful to check in what context the cur-
rent routine was called, and why the arguments of the call are the way they are. For
this one needs to examine the calling stack. If execution is stopped somewhere deep in a
program, you can use the commands C-c C-d C-〈UP〉 (idlwave-shell-stack-up) and C-c

C-d C-〈DOWN〉 (idlwave-shell-stack-down) or the corresponding toolbar buttons to move
through the calling stack. The mode line of the shell window will indicate where you are on
the stack with a token like ‘[-3:MYPRO]’, and the line of IDL code which did the current
call will be highlighted. When you continue execution, IDLWAVE will automatically return
to the current level. See Section 5.3.4 [Examining Variables], page 28, for information how
to examine the value of variables and expressions on higher calling stack levels.

5.3.4 Examining Variables

When execution is stopped you can examine the values of variables. The command C-c

C-d C-p prints the expression at point, while C-c C-d ? shows help on this expression. The
expression at point is an array expression or a function call, or the contents of a pair of
parenthesis. The selected expression becomes highlighted in the source code for a short
time. Calling the above commands with a prefix argument will prompt for an expression
instead of using the one at point. Two prefix arguments (C-u C-u C-c C-d C-p) will use the
current region as expression.

It is very convenient to click with the mouse on expressions to retrieve their value. Use
S-mouse-2 to print an expression and C-S-mouse-2 to get help on an expression. I.e. you
need to hold down 〈SHIFT〉 and 〈CONTROL〉 while clicking with the middle mouse button. If
you simply click, the expression will be selected in the same way as described above. But
you can also drag the mouse in order to define the expression.

Printing of expressions also works on higher levels of the calling stack. This means that
you can examine the values of variables and expressions inside the routine which called the
current routine etc. See Section 5.3.3 [Walking the Calling Stack], page 28, for information
on how to step back to higher levels on the calling stack. Commands which print values of
variables and expressions will then use the values of variables in the calling routine. The
following restrictions apply for all levels except the current:
• Array expressions must use the ‘[]’ index delimiters. Identifiers with a ‘()’ will be

interpreted as function calls.
• Printing values of expressions on higher levels of the calling stack uses the unsupported

IDL routine ROUTINE_NAMES, which may or may not be available in future versions of
IDL.

User Optionidlwave-shell-expression-face
The face for idlwave-shell-expression-overlay. Allows you to choose the font,
color and other properties for the expression printed by IDL.

User Optionidlwave-shell-print-expression-function (nil)
A function to handle special display of evaluated expressions.

Chapter 6: Installation 29

6 Installation

6.1 Installing IDLWAVE

IDLWAVE is part of Emacs 21.1 and later. It is also an XEmacs package and can be
installed from the XEmacs ftp site with the normal package management system on XEmacs
21. These pre-installed versions should work out-of-the-box. However, the files needed for
online help are not distributed with XEmacs/Emacs and have to be installed separately1

(see Section 6.2 [Installing Online Help], page 29).
You can also download IDLWAVE and install it yourself from the maintainers webpage.

Follow the instructions in the INSTALL file.

6.2 Installing Online Help

If you want to use the online help display, two additional files (an ASCII version of
the IDL documentation and a topics/code file) must be installed. These files can also be
downloaded from the maintainers webpage. You need to place the files somewhere on your
system and tell IDLWAVE where they are with

(setq idlwave-help-directory "/path/to/help/files/")

6.3 Upgrading from the old ‘idl.el’ file

If you have been using the old ‘idl.el’ and ‘idl-shell.el’ files and would like to use
IDLWAVE, you need to update your customization in ‘.emacs’.
1. Change all variable and function prefixes from ‘idl-’ to ‘idlwave-’.
2. Remove the now invalid autoload and auto-mode-alist forms pointing to the ‘idl.el’

and ‘idl-shell.el’ files. Install the new autoload forms.
3. If you have been using the hook function recommended in earlier versions to get a

separate frame for the IDL shell, remove that command from your idlwave-shell-
mode-hook. Instead, set the variable idlwave-shell-use-dedicated-frame with

(setq idlwave-shell-use-dedicated-frame t)

4. The key sequence M-〈TAB〉 no longer inserts a TAB character. Like in in many other
Emacs modes, M-〈TAB〉 now does completion. Inserting a TAB has therefore been moved
to C-〈TAB〉. On a character based terminal you can also use C-c 〈SPC〉.

1 Due to copyright reasons, the ASCII version of the IDL manual cannot be distributed under the GPL.

ftp://ftp.xemacs.org/pub/xemacs/packages/
http://idlwave.org/
http://idlwave.org/

Chapter 7: Acknowledgement 30

7 Acknowledgement

The main contributors to the IDLWAVE package have been:
− Chris Chase, the original author. Chris wrote ‘idl.el’ and ‘idl-shell.el’ and main-

tained them for several years.
− Carsten Dominik was in charge of the package from version 3.0, during which time

he overhauled almost everything, modernized IDLWAVE with many new features, and
developed the manual.

− J.D. Smith, the current maintainer, as of version 4.10. I helped shape object method
completion and most new features introduced in versions 4.x.

The following people have also contributed to the development of IDLWAVE with patches,
ideas, bug reports and suggestions.
− Ulrik Dickow <dickow@nbi.dk>
− Eric E. Dors <edors@lanl.gov>
− Stein Vidar H. Haugan <s.v.h.haugan@astro.uio.no>
− David Huenemoerder <dph@space.mit.edu>
− Kevin Ivory <Kevin.Ivory@linmpi.mpg.de>
− Xuyong Liu <liu@stsci.edu>
− Simon Marshall <Simon.Marshall@esrin.esa.it>
− Craig Markwardt <craigm@cow.physics.wisc.edu>
− Laurent Mugnier <mugnier@onera.fr>
− Lubos Pochman <lubos@rsinc.com>

− Patrick M. Ryan <pat@jaameri.gsfc.nasa.gov>
− Marty Ryba <ryba@ll.mit.edu>
− Phil Williams <williams@irc.chmcc.org>
− Phil Sterne <sterne@dublin.llnl.gov>

Thanks to everyone!

mailto:chase@att.com
mailto:dominik@astro.uva.nl
mailto:jdsmith@astro.cornell.edu

Appendix A: Sources of Routine Info 31

Appendix A Sources of Routine Info

In Section 4.2 [Routine Info], page 10 and Section 4.4 [Completion], page 14 it was
shown how IDLWAVE displays the calling sequence and keywords of routines, and how it
completes routine names and keywords. For these features to work, IDLWAVE must know
about the accessible routines.

A.1 Routine Definitions

Routines which can be used in an IDL program can be defined in several places:

1. Builtin routines are defined inside IDL itself. The source code of such routines is not
accessible to the user.

2. Routines part of the current program are defined in a file which is explicitly compiled
by the user. This file may or may not be located on the IDL search path.

3. Library routines are defined in special files which are located somewhere on IDL’s search
path. When a library routine is called for the first time, IDL will find the source file
and compile it dynamically.

4. External routines written in other languages (like Fortran or C) can be called with
CALL_EXTERNAL, linked into IDL via LINKIMAGE, or included as dynamically loaded
modules (DLMs). Currently IDLWAVE cannot provide routine info and completion
for external routines.

A.2 Routine Information Sources

In oder to know about as many routines as possible, IDLWAVE will do the following to
collect information:

1. It has a builtin list with the properties of the builtin IDL routines. IDLWAVE 4.10
is distributed with a list of 1322 routines and 5952 keywords, reflecting IDL version
5.5. This list has been created by scanning the IDL manuals and is stored in the file
‘idlw-rinfo.el’. See Section A.5 [Documentation Scan], page 34, for information how
to regenerate this file for new versions of IDL.

2. It scans all buffers of the current Emacs session for routine definitions. This is done
automatically when routine information or completion is first requested by the user.
Each new buffer and each buffer which is saved after making changes is also scanned.
The command C-c C-i (idlwave-update-routine-info) can be used at any time to
rescan all buffers.

3. If you have an IDLWAVE-Shell running as inferior process of the current Emacs session,
IDLWAVE will query the shell for compiled routines and their arguments. This happens
automatically when routine information or completion is first requested by the user,
and each time an Emacs buffer is compiled with C-c C-d C-c. The command C-c C-i

(idlwave-update-routine-info) can be used to ask the shell again at any time.
4. IDLWAVE can scan all or selected library files and store the result in a file which will

be automatically loaded just like ‘idlw-rinfo.el’. See Section A.3 [Library Catalog],
page 32, for information how to scan library files.

Appendix A: Sources of Routine Info 32

Loading routine and catalog information is a time consuming process. Depending on the
system and network configuration it takes between 2 and 30 seconds. In order to minimize
the waiting time upon your first completion or routine info command in a session, IDLWAVE
uses Emacs idle time to do the initialization if 5 steps. If this gets into your way, set the
variable idlwave-init-rinfo-when-idle-after to 0 (the number zero).

User Optionidlwave-init-rinfo-when-idle-after (10)
Seconds of idle time before routine info is automatically initialized.

User Optionidlwave-scan-all-buffers-for-routine-info (t)
Non-nil means, scan all buffers for IDL programs when updating info.

User Optionidlwave-query-shell-for-routine-info (t)
Non-nil means query the shell for info about compiled routines.

User Optionidlwave-auto-routine-info-updates
Controls under what circumstances routine info is updated automatically.

A.3 Library Catalog

IDLWAVE can extract routine information from library modules and store that infor-
mation in a file. To do this, the variable idlwave-libinfo-file needs to contain the path
to a file in an existing directory (the default is "~/.idlcat.el"). Since the file will contain
lisp code, its name should end in ‘.el’. Under Windows and MacOS, you also need to
specify the search path for IDL library files in the variable idlwave-library-path, and
the location of the IDL directory (the value of the !DIR system variable) in the variable
idlwave-system-directory, like this1:

(setq idlwave-library-path
’("+c:/RSI/IDL54/lib/" "+c:/user/me/idllibs"))

(setq idlwave-system-directory "c:/RSI/IDL54/")

Under UNIX, these values will be automatically inferred from an IDLWAVE shell.
The command M-x idlwave-create-libinfo-file can then be used to scan library

files. It brings up a widget in which you can select some or all directories on the search
path. If you only want to have routine and completion info of some libraries, it is sufficient
to scan those directories. However, if you want IDLWAVE to detect possible name conflicts
with routines defined in other libraries, the whole pass should be scanned.

After selecting directories, click on the ‘[Scan & Save]’ button in the widget to scan
all files in the selected directories and write the resulting routine information into the file
idlwave-libinfo-file. In order to update the library information from the same direc-
tories, call the command idlwave-update-routine-info with a double prefix argument:
C-u C-u C-c C-i. This will rescan files in the previously selected directories, write an up-
dated version of the libinfo file and rebuild IDLWAVE’s internal lists. If you give three
prefix arguments C-u C-u C-u C-c C-i, updating will be done with a background job2. You
can continue to work, and the library catalog will be re-read when it is ready.

1 The initial ‘+’ leads to recursive expansion of the path, just like in IDL
2 Unix systems only, I think.

Appendix A: Sources of Routine Info 33

A note of caution: Depending on your local installation, the IDL library can be very
large. Parsing it for routine information will take time and loading this information into
Emacs can require a significant amount of memory. However, having this information
available will be a great help.

User Optionidlwave-libinfo-file
File for routine information of the IDL library.

User Optionidlwave-library-path
IDL library path for Windows and MacOS. Not needed under Unix.

User Optionidlwave-system-directory
The IDL system directory for Windows and MacOS. Not needed under UNIX.

User Optionidlwave-special-lib-alist
Alist of regular expressions matching special library directories.

A.4 Load-Path Shadows

IDLWAVE can compile a list of routines which are defined in several different files. Since
one definition will hide (shadow) the others depending on which file is compiled first, such
multiple definitions are called "load-path shadows". IDLWAVE has several routines to scan
for load path shadows. The output is placed into the special buffer ‘*Shadows*’. The format
of the output is identical to the source section of the routine info buffer (see Section 4.2
[Routine Info], page 10). The different definitions of a routine are listed in the sequence of
likelihood of use. So the first entry will be most likely the one you’ll get if an unsuspecting
command uses that routine. Before listing shadows, you should make sure that routine info
is up-to-date by pressing C-c C-i. Here are the different routines:

M-x idlwave-list-buffer-load-path-shadows

This commands checks the names of all routines defined in the current buffer for
shadowing conflicts with other routines accessible to IDLWAVE. The command
also has a key binding: C-c C-b

M-x idlwave-list-shell-load-path-shadows.
Checks all routines compiled under the shell for shadowing. This is very useful
when you have written a complete application. Just compile the application,
use RESOLVE_ALL to compile any routines used by your code, update the routine
info inside IDLWAVE with C-c C-i and then check for shadowing.

M-x idlwave-list-all-load-path-shadows

This command checks all routines accessible to IDLWAVE for conflicts.

For these commands to work properly you should have scanned the entire load path, not
just selected directories. Also, IDLWAVE should be able to distinguish between the system
library files (normally installed in ‘/usr/local/rsi/idl/lib’) and any site specific or user
specific files. Therefore, such local files should not be installed inside the ‘lib’ directory of
the IDL directory. This is of course also advisable for many other reasons.

Appendix A: Sources of Routine Info 34

Users of Windows and MacOS also must set the variable idlwave-system-directory
to the value of the !DIR system variable in IDL. IDLWAVE appends ‘lib’ to the value of
this variable and assumes that all files found on that path are system routines.

Another way to find out if a specific routine has multiple definitions on the load path is
routine info display (see Section 4.2 [Routine Info], page 10).

A.5 Documentation Scan

IDLWAVE derives it knowledge about system routines from the IDL manuals. The file
‘idlw-rinfo.el’ contains the routine information for the IDL system routines. The Online
Help feature of IDLWAVE requires ASCII versions of some IDL manuals to be available in
a specific format (‘idlw-help.txt’), along with an Emacs-Lisp file ‘idlw-help.el’ with
supporting code and pointers to the ASCII file.

All 3 files can be derived from the IDL documentation. If you are lucky, the maintainer
of IDLWAVE will always have access to the newest version of IDL and provide updates.
The IDLWAVE distribution also contains the Perl program ‘get_rinfo’ which constructs
these files by scanning selected files from the IDL documentation. Instructions on how to
use ‘get_rinfo’ are in the program itself.

One particularly frustrating situation occurs when a new IDL version is released without
the associated documentation updates. Instead, a What’s New file containing new and
updated documentation is shipped alongside the previous version’s reference material. The
‘get_rinfo’ script can merge this new information into the standard help text and routine
information, as long as it is pre-formatted in a simple way. See ‘get_rinfo’ for more
information.

Appendix B: Configuration Examples 35

Appendix B Configuration Examples

Question: So now you have all these complicated configuration options in your package, but
which ones do you as the maintainer actually set in your own configuration?
Answer: Hardly any. As the maintainer, I set the default of most options to what I think
is best. However, the default settings do not turn on features which
− are not self-evident (i.e. too magic) when used by an unsuspecting user
− are too intrusive
− will not work properly on all Emacs installations out there
− break with widely used standards.

To see what I mean, here is the entire configuration I have in my ‘.emacs’:
(setq idlwave-shell-debug-modifiers ’(control shift)

idlwave-store-inquired-class t
idlwave-shell-automatic-start t
idlwave-main-block-indent 2
idlwave-init-rinfo-when-idle-after 2
idlwave-help-dir "~/lib/emacs/idlwave"
idlwave-special-lib-alist ’(("/idl-astro/" . "AstroLib")

("/jhuapl/" . "JHUAPL-Lib")
("/dominik/lib/idl/" . "MyLib")))

However, if you are an Emacs power-user and want IDLWAVE to work completely dif-
ferently, the options allow you to change almost every aspect of it. Here is an example
of a much more extensive configuration of IDLWAVE. To say it again - this is not what I
recommend, but the user is King!

;;; Settings for IDLWAVE mode

(setq idlwave-block-indent 3) ; Indentation settings
(setq idlwave-main-block-indent 3)
(setq idlwave-end-offset -3)
(setq idlwave-continuation-indent 1)
(setq idlwave-begin-line-comment "^;[^;]") ; Leave ";" but not ";;"

; anchored at start of line.
(setq idlwave-surround-by-blank t) ; Turn on padding ops =,<,>
(setq idlwave-pad-keyword nil) ; Remove spaces for keyword ’=’
(setq idlwave-expand-generic-end t) ; convert END to ENDIF etc...
(setq idlwave-reserved-word-upcase t) ; Make reserved words upper case

; (with abbrevs only)
(setq idlwave-abbrev-change-case nil) ; Don’t force case of expansions
(setq idlwave-hang-indent-regexp ": ") ; Change from "- " for auto-fill
(setq idlwave-show-block nil) ; Turn off blinking to begin
(setq idlwave-abbrev-move t) ; Allow abbrevs to move point

;; Some setting can only be done from a mode hook. Here is an example:

(add-hook ’idlwave-mode-hook
(lambda ()

Appendix B: Configuration Examples 36

(setq abbrev-mode 1) ; Turn on abbrevs (-1 for off)
(setq case-fold-search nil) ; Make searches case sensitive
;; Run other functions here
(font-lock-mode 1) ; Turn on font-lock mode
(idlwave-auto-fill-mode 0) ; Turn off auto filling
;;
;; Pad with with 1 space (if -n is used then make the
;; padding a minimum of n spaces.) The defaults use -1
;; instead of 1.
(idlwave-action-and-binding "=" ’(idlwave-expand-equal 1 1))
(idlwave-action-and-binding "<" ’(idlwave-surround 1 1))
(idlwave-action-and-binding ">" ’(idlwave-surround 1 1 ’(?-)))
(idlwave-action-and-binding "&" ’(idlwave-surround 1 1))
;;
;; Only pad after comma and with exactly 1 space
(idlwave-action-and-binding "," ’(idlwave-surround nil 1))
(idlwave-action-and-binding "&" ’(idlwave-surround 1 1))
;;
;; Pad only after ‘->’, remove any space before the arrow
(idlwave-action-and-binding "->" ’(idlwave-surround 0 -1 nil 2))
;;;
;; Set some personal bindings
;; (In this case, makes ‘,’ have the normal self-insert behavior.)
(local-set-key "," ’self-insert-command)
;; Create a newline, indenting the original and new line.
;; A similar function that does _not_ reindent the original
;; line is on "\C-j" (The default for emacs programming modes).
(local-set-key "\n" ’idlwave-newline)
;; (local-set-key "\C-j" ’idlwave-newline) ; My preference.
))

;;; Settings for IDLWAVE SHELL mode

(setq idlwave-shell-overlay-arrow "=>") ; default is ">"
(setq idlwave-shell-use-dedicated-frame t) ; Make a dedicated frame
(setq idlwave-shell-prompt-pattern "^WAVE> ") ; default is "^IDL> "
(setq idlwave-shell-explicit-file-name "wave")
(setq idlwave-shell-process-name "wave")
(setq idlwave-shell-use-toolbar nil) ; No toolbar

Appendix C: Windows and MacOS 37

Appendix C Windows and MacOS

IDLWAVE was developed on a UNIX system. However, due to the portability of Emacs,
much of IDLWAVE does also work under different operating systems like Windows (with
NTEmacs or NTXEmacs) or MacOS.

The only problem really is that RSI does not provide a command-line version of IDL for
Windows or MacOS which IDLWAVE could communicate with1. Therefore the IDLWAVE
Shell does not work and you have to rely on IDLDE to run and debug your programs.
However, editing IDL source files with Emacs/IDLWAVE works with all bells and whistles,
including routine info, completion and fast online help. Only a small amount of additional
information must be specified in your .emacs file: You must specify path names which on a
UNIX can be automatically gathered by talking to the IDL program.

Here is an example of the additional configuration needed for a Windows system. I am
assuming that IDLWAVE has been installed in ‘C:\Program Files\IDLWAVE’ and that IDL
is installed in ‘C:\RSI\IDL55’.

;; location of the lisp files (needed if IDLWAVE is not part of
;; the X/Emacs installation)
(setq load-path (cons "c:/program files/IDLWAVE" load-path))

;; The location of the IDL library files, both from RSI and your own.
;; note that the initial "+" expands the path recursively
(setq idlwave-library-path

’("+c:/RSI/IDL55/lib/" "+c:/user/me/idllibs"))

;; location of the IDL system directory (try "print,!DIR")
(setq idlwave-system-directory "c:/RSI/IDL55/")

;; location of the IDLWAVE help files idlw-help.el and idlw-help.txt.
(setq idlwave-help-dir "c:/IDLWAVE")

;; file in which to store the user catalog info
(setq idlwave-libinfo-file "c:/IDLWAVE/idlcat.el")

Furthermore, Windows sometimes tries to outsmart you - make sure you check the
following things:
• When you download the IDLWAVE distribution, make sure you save the files under

the names ‘idlwave.tar.gz’ and ‘idlwave-help-tar.gz’.
• Be sure that your software for untarring/ungzipping is NOT doing smart CR/LF con-

version (WinZip users will find this in Options:Configuration:Miscellaneous, change
the setting, then re-open the archive). This adds one byte per line, throwing off the
byte-counts for the help file lookups and defeating fast online help lookup.

• M-TAB switches among running programs - use Esc-TAB instead. FIXME: unfinished.

1 Call your RSI representative and complain - it should be trivial for them to provide one. And if enough
people ask for it, maybe they will.

Index 38

Index

!
!DIR, IDL variable . 11, 32, 33
!PATH, IDL variable . 11, 31

.
‘.emacs’. 35

<
<NEW>..</NEW> . 12

A
Abbreviations . 17
Acknowledgement . 30
Actions . 19
Actions, applied to foreign code 19
Active text, in routine info 11
Application, testing for shadowing 33
Authors, of IDLWAVE . 30
auto-fill-mode . 9

B
Block boundary check . 20
Block, closing . 20
Breakpoints . 27
Buffer, testing for shadowing 33
Buffers, killing . 16
Buffers, scanning for routine info 10, 31
Builtin list of routines . 31

C
C-c ? . 10
C-c C-d . 26
C-c C-d C-b . 27
C-c C-d C-c . 26
C-c C-d C-p . 28
C-c C-h . 21
C-c C-i . 10, 14
C-c C-m . 21
C-c C-s . 23
C-c C-v . 16
C-M-\ . 8
CALL_EXTERNAL, IDL routine 31
Calling sequences . 11
Calling stack, walking . 28
Case changes . 21
Case of completed words . 15
Categories, of routines . 11
cc-mode.el . 1
Changelog, in doc header. 21

Character input mode (Shell) 25
Class ambiguity . 15
Class name completion . 14
Class query, forcing . 16
Closing a block . 20
Code formatting . 8
Code indentation . 8
Code structure, moving through 22
Code templates . 17
Coding standards, enforcing 19
Comint . 24
Comint, Emacs package . 23
Comment indentation . 9
Compiling library modules 17
Compiling programs . 26
Completion . 14
Completion, ambiguity . 15
Completion, forcing function name 15
Completion, in the shell . 25
Completion, Online Help . 15
Completion, scrolling . 15
Configuration examples . 35
Context, for online help . 12
Continuation lines . 9
Contributors, to IDLWAVE 30
Copyright, of IDL manual . 29
Copyright, of IDLWAVE. 2
CORBA (Common Object Request Broker

Architecture) . 1

D
Debugging . 26
Dedicated frame, for shell buffer 23
Default command line, executing 26
Default routine, for info and help 11
Default settings, of options 35
DocLib header . 21
DocLib header, as online help 12
Documentation header . 21
Downcase, enforcing for reserved words 21
Duplicate routines . 11, 33

E
Emacs, distributed with IDLWAVE 29
Email address, of Maintainer 30
END type checking . 20
END, automatic insertion . 20
END, expanding . 20
Example configuration . 35
Executing a default command line 26
Execution, controlled. 27
Expressions, help . 28

Index 39

Expressions, printing . 28
External routines . 31

F
Feature overview . 1
Filling . 9
Flags, in routine info . 11
Font lock . 10
Forcing class query. 16
Foreign code, adapting . 8, 19
Formatting, of code . 8
Frame, for shell buffer . 23
FTP site . 29
‘Func-menu’, XEmacs package. 22
Function definitions, jumping to 22
Function name completion . 14

G
‘get_rinfo’ . 34
Getting Started . 3

H
Hanging paragraphs . 9
Header, for file documentation 21
Help application, keybindings 13
HELP, on expressions . 28
Highlighting of syntax . 10
Homepage for IDLWAVE . 29
Hooks . 22, 24

I
IDL library routine info . 32
IDL manual, ASCII version 12
IDL variable !DIR . 11, 32, 33
IDL variable !PATH . 11, 31
IDL, as Emacs subprocess . 23
‘idl-shell.el’ . 1
‘idl.el’ . 1
‘idlw-help.el’ . 12, 34
‘idlw-help.txt’ . 12, 34
‘idlw-rinfo.el’ . 34
IDLWAVE in a Nutshell . 2
IDLWAVE major mode . 8
IDLWAVE shell . 23
IDLWAVE, homepage . 29
idlwave-abbrev-change-case 21
idlwave-abbrev-move . 19
idlwave-abbrev-start-char 19
idlwave-auto-fill-split-string 9
idlwave-auto-routine-info-updates 32
idlwave-begin-line-comment 9
idlwave-block-indent . 8
idlwave-class-arrow-face 16
idlwave-code-comment . 9

idlwave-complete-empty-string-as-lower-case

. 15
idlwave-completion-case 15
idlwave-completion-fontify-classes 16
idlwave-completion-force-default-case 15
idlwave-completion-restore-window-

configuration . 15
idlwave-completion-show-classes 16
idlwave-continuation-indent 8
idlwave-default-font-lock-items 10
idlwave-do-actions . 19
idlwave-doc-modifications-keyword 21
idlwave-doclib-end . 22
idlwave-doclib-start . 21
idlwave-end-offset . 8
idlwave-expand-generic-end 20
idlwave-extra-help-function 14
idlwave-file-header . 21
idlwave-fill-comment-line-only 9
idlwave-function-completion-adds-paren . . . 15
idlwave-hang-indent-regexp 10
idlwave-hanging-indent . 10
idlwave-header-to-beginning-of-file 21
idlwave-help-activate-links-aggressively

. 14
idlwave-help-application 22
idlwave-help-directory . 13
idlwave-help-fontify-source-code 14
idlwave-help-frame-parameters 14
idlwave-help-link-face . 14
idlwave-help-source-try-header 14
idlwave-help-use-dedicated-frame 14
idlwave-highlight-help-links-in-completion

. 15
idlwave-indent-to-open-paren 8
idlwave-init-rinfo-when-idle-after 32
idlwave-keyword-completion-adds-equal 15
idlwave-libinfo-file . 33
idlwave-library-path . 33
idlwave-load-hook . 22
idlwave-main-block-indent 8
idlwave-max-popup-menu-items 14
idlwave-mode-hook . 22
idlwave-no-change-comment 9
idlwave-pad-keyword . 20
idlwave-query-class . 16
idlwave-query-shell-for-routine-info 32
idlwave-reindent-end . 20
idlwave-reserved-word-upcase 21
idlwave-resize-routine-help-window 12
idlwave-rinfo-max-source-lines 12
idlwave-scan-all-buffers-for-routine-info

. 32
idlwave-shell-activate-prefix-keybindings

. 26
idlwave-shell-arrows-do-history 25
idlwave-shell-automatic-start 23
idlwave-shell-breakpoint-face 27

Index 40

idlwave-shell-comint-settings 25
idlwave-shell-command-history-file 24
idlwave-shell-command-line-options 23
idlwave-shell-debug-modifiers 26
idlwave-shell-explicit-file-name 23
idlwave-shell-expression-face 28
idlwave-shell-file-name-chars 25
idlwave-shell-frame-parameters 24
idlwave-shell-graphics-window-size 25
idlwave-shell-initial-commands 24
idlwave-shell-input-mode-spells 25
idlwave-shell-mark-breakpoints 27
idlwave-shell-mark-stop-line 26
idlwave-shell-mode-hook 24
idlwave-shell-overlay-arrow 27
idlwave-shell-prefix-key 26
idlwave-shell-print-expression-function . . 28
idlwave-shell-process-name 23
idlwave-shell-prompt-pattern 23
idlwave-shell-raise-frame 24
idlwave-shell-save-command-history 24
idlwave-shell-stop-line-face 27
idlwave-shell-temp-pro-prefix 24
idlwave-shell-use-dedicated-frame 24
idlwave-shell-use-input-mode-magic 25
idlwave-shell-use-toolbar 26
idlwave-show-block . 20
idlwave-special-lib-alist 12, 33
idlwave-split-line-string 10
idlwave-startup-message 22
idlwave-store-inquired-class 16
idlwave-support-inheritance 16
idlwave-surround-by-blank 20
idlwave-system-directory 33
idlwave-timestamp-hook . 21
idlwave-use-last-hang-indent 10
‘Imenu’, Emacs package . 22
Indentation . 8
Indentation, of foreign code . 8
Input mode . 25
Inserting keywords, from routine info 11
Installation . 29
Installing online help . 12, 29
Interactive Data Language . 1
Interface Definition Language 1
Interview, with the maintainer 35
Introduction . 1

K
Keybindings for debugging 26
Keybindings, in help application 13
Keyword completion . 14
Keywords of a routine . 11
Killing autoloaded buffers . 16

L
Library catalog . 32
Library scan . 32
Line input mode (Shell) . 25
Line splitting . 9
LINKIMAGE, IDL routine . 31
Load-path shadows . 11, 33

M
M-? . 12
M-q . 9
M-〈RET〉 . 9
M-〈TAB〉 . 14, 29
MacOS . 23, 32, 33, 37
Magic spells, for input mode 25
Maintainer, of IDLWAVE . 30
Major mode, idlwave-mode . 8
Major mode, idlwave-shell-mode 23
Method completion . 14
Mixed case completion . 15
Modification timestamp . 21
Module source file . 16
Motion commands . 22
Mouse binding to print expressions 28
Multiply defined routines 11, 33

N
Nutshell, IDLWAVE in a . 2

O
OBJ_NEW, special online help 13
Object method completion 14
Object methods . 15
Old variables, renaming . 29
Online Help . 12
Online Help from the routine info buffer 11
Online Help in ‘*Completions*’ buffer 15
Online Help, in the shell . 25
Online Help, Installation 12, 29
Online help, updates . 12
Operators, padding with spaces 20

P
Padding operators with spaces 20
Paragraphs, filling . 9
Paragraphs, hanging . 9
Perl program, to create ‘idlw-rinfo.el’ 34
PRINT expressions . 28
Printing expressions . 28
Printing expressions, on calling stack 28
Procedure definitions, jumping to 22
Procedure name completion 14
Program structure, moving through 22

Index 41

Programs, compiling . 26

Q
Quick-Start . 3

R
Renaming old variables . 29
RESOLVE_ROUTINE . 17
Restrictions for expression printing 28
Routine definitions . 31
Routine definitions, multiple 11, 33
Routine info . 10
Routine info sources . 31
Routine info, in the shell . 25
Routine source file . 16
Routine source information 11
ROUTINE NAMES, IDL procedure 28
Routines, resolving . 17

S
Scanning buffers for routine info 10, 31
Scanning the documentation 34
Scrolling the ‘*Completions*’ window 15
self object, default class . 15
Shadows, load-path . 11, 33
Shell, basic commands . 24
Shell, querying for routine info 10, 31
Shell, starting . 23
Source code, as online help 12
Source file, access from routine info 11
Source file, of a routine . 16
Sources of routine information 31

Space, around operators . 20
Speed, of online help . 12
Spells, magic . 25
Splitting, of lines . 9
Starting the shell . 23
Stepping . 27
String splitting . 9
Subprocess of Emacs, IDL . 23
Summary of important commands. 2
Syntax highlighting . 10

T
Templates . 17
Thanks . 30
Timestamp, in doc header. 21
Toolbar . 26
Tutorial . 3

U
Unix . 23, 32
Upcase, enforcing for reserved words 21
Updated online help . 12
Updating routine info . 10, 31
Upgrading from old ‘idl.el’ 29
URL, homepage for IDLWAVE 29

W
Windows . 23, 32, 33, 37

X
XEmacs package IDLWAVE 29

	Introduction
	IDLWAVE in a Nutshell
	Getting Started (Tutorial)
	Lesson I: Development Cycle
	Lesson II: Customization
	Lesson III: Library Catalog

	The IDLWAVE Major Mode
	Code Formatting
	Code Indentation
	Comment Indentation
	Continuation Lines and Filling
	Syntax Highlighting

	Routine Info
	Online Help
	Completion
	Routine Source
	Resolving Routines
	Code Templates
	Abbreviations
	Actions
	Block Boundary Check
	Padding Operators
	Case Changes

	Documentation Header
	Motion Commands
	Miscellaneous Options

	The IDLWAVE Shell
	Starting the Shell
	Using the Shell
	Debugging IDL Programs
	Compiling Programs
	Breakpoints and Stepping
	Walking the Calling Stack
	Examining Variables

	Installation
	Installing IDLWAVE
	Installing Online Help
	Upgrading from the old idl.el file

	Acknowledgement
	Sources of Routine Info
	Routine Definitions
	Routine Information Sources
	Library Catalog
	Load-Path Shadows
	Documentation Scan
	Configuration Examples
	Windows and MacOS
	Index

